Welcome to VERCIDA website.

Skip to main content
Enable Recite to make this website accessible

Profile completeness

Did you know that users who have filled in their profile details are 42 times more likely to get matched with the right employer?

security illustration Help us find the best workplace for you by sharing more about yourself. We will never disclose your information with others.

Job description

Based within the Department of Engineering Mathematics at the University of Bristol, with Dr Naoki Masuda you will analyse the preprocessed MEG and sEEG data using recurrence analysis.


We are looking for a highly-motivated, self-driven PhD in computer science, physics, applied mathematics, biomedical engineering or a closely related field. You should be interested in developing and applying computational approaches for processing and analyzing MEG and EEG data within the scope of the project described above. Some background in either computational neuroscience, machine learning, statistical modelling, network science or nonlinear dynamics is required. General knowledge on MEG, EEG or epilepsy will be considered as a plus. Skills in Python or MATLAB will also be considered as a plus.


The aim of the project is to consolidate the methodology based on "recurrence analysis" developed in a recently funded pilot project and apply it to functional network data recorded from human individuals affected by epilepsy. Recurrence analysis is a well-established framework for nonlinear numerical time series ( Marwan et al., Physics Reports, 438, 237, 2007 ), which allows us to (i) obtain visual information by means of two-dimensional "recurrence plots" and (ii) quantify different aspects of the dynamics by means of the so-called "recurrence quantification analysis".


We see strong potentials of our recurrence analysis methods in epil...

Before you apply, we encourage you to learn more about University of Bristol

Be unique. Be authentic. However you prefer to say it, we really mean it. Our culture embraces people’s diverse perspectives and creates a positive environment where everyone belongs. We’re determined to build a better, more connected world for everyone.

We see strong potentials of our recurrence analysis methods in epilepsy for a number of reasons. Therefore, we will apply the methods to temporal, functional connectivity network data obtained with MEG and also a type of EEG, called stereo EEG. Both data sets have been obtained from epileptic participants and healthy controls in Cardiff. The project aims to (i) characterise patients' resting-state MEG signals and classify them from controls, and (ii) localise stereo EEG signatures in the form of temporal network changes during an inter-ictal to pre-ictal transition.


For informal enquires please contact Dr Naoki Masuda naoki.masuda@bristol.ac.uk



We appreciate and value difference, seeking to attract, develop and retain a diverse mix of talented people that will contribute to the overall success of Bristol and help maintain our position as one of the world's leading universities.

Job Sector
Job Position
General Legal Support
£33,199.00 - £37,345.00 / year
Bristol, UK Show on map
Post date
Closing date

Other jobs in Education

Part-Time Teacher

United Kingdom

posted 1 month ago

Café Supervisor

United Kingdom

posted 1 month ago

You will receive an email with link to reset your password.

Enter your new password